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NON-STEADY-STATE SHOCK WAVE FRONTS AND THEIR INTERACTION

Sebastian von Hoerner
Astronomisches Rechen-Institut, Heidelberg

Introduction /376"

A study group was formed at the Max-Planck-Institut fur

Physik, G6ttingen, in 1953 under the direction of C.F. v.

Weizsaacker, consisting of about 8 members working closely on

the problem of strong shock wave fronts. Impetus for this

was provided by the necessity of searching for a sort of

"theory' of turbulence with supersonic velocities" applicable

to many problems in astrophysics. Due to a variety of con-

siderations, this was not attempted with the otherwise con-

ventional, direct approach of correlation statistics, but

began with the details; and what amount to the (rather fictive)

turbulence elements in the case of subsonic velocity would

correspond, in the case of supersonic velocity, to (phenomeno-

logically better-defined) shock wave fronts.

An additional impetus for concern with shock wave fronts

is provided directly by observation. The photographs of

several emission nebulae exhibit a large number of filamentous

structures, and it is quite possible that some of these fila-

ments could be interpreted as laterally projected shock wave

fronts or as lines of intersection between two obliquely

intersecting fronts.

Since then, ten articles from this study group have been

published. Additional existent material includes three

unpublished dissertations, two more articles, and a series

of other discussions and results. This study group has now

been disbanded again. A certain preliminary stopping point

*NumbersiJn theminargin indicate pagination in the foreign text.
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has been reached within our working program. Further pursuit

would only be feasible with renewed "large-scale implementa-

tion," and we hope that this idea will be taken up again in

some other study group and continued.

Thus the goal of this article is to summarize everything

to date and to unify it so that it can serve as a basis for

renewed study. An additional reason for such a summary is

that, aside from the pursuit of our direct program, we have

attacked and worked on a large number of individual questions

in hydrodynamics which could also be useful for completely

different problems.
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I. Problem and Program /377

1. Purpose

For many problems in astrophysics, a need has existed for

several years for a theory of turbulence at supersonic velocities.

As an example, we would like to briefly outline the conditions

of motion of interstellar matter. The interstellar matter

which is highly concentrated in the plane of the Milky Way

consists primarily of atomic hydrogen; its density averages
about 10 to 10-2 3 g/cm . We distinguish between the

unionized HI regions, with temperatures of 50-1000 absolute,

and the ionized HII regions, at about 10,0000. The associated

sonic velocities are thus about 1 km/sec (for HI) and 10 km/sec

(for HII). We must compare these with the flow veloc'ities.

The interstellar matter participates in the general rotation

about the center of the Milky Way, which amounts to about

250 km/sec in the vicinity of the Sun. On this rotation is

superimposed a disordered motion (individual regions or

clouds) on the order of 5 km/sec; however, individual fast

clouds can have velocities up to 100 km/sec. We can find

even higher velocities in expanding shells following supe'novae,

e.g. 1000 km/sec in the Crab nebula.

We can see from this comparison that the Mach numbers M

(flow velocity / sonic velocity) characterizing the state

of motion are generally scattered over the wide range between

1 and 100. On the other hand, theoretical works to date on

turbulent motion processes include an assumption of incom-

pressibility (M << 1), so their results can only be applied

in special cases, if at all.

A purpose is thus clearly provided for seeking a theory

of turbulence at high Mach numbers; and the question now is

by what path to best approach this theory. We could first
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consider proceeding much as in the incompressible case, for

example, by conducting a Fourier analysis in accordance with

Heisenberg [1], by considering a hierarchy of elements within

one another in accordance with v. Weizsacker [2], or by

introducing correlation tensors in accordance with Chandra-

sekhar [3, 4]. The compressibility now to be included would

have to be accounted for with suitable additional terms.

It is highly questionable, however, whether a formula-

tion of this nature can produce success. As soon as three-

dimensional velocity differences become greater than sonic

velocity, shock wave fronts must necessarily by generated

which represent something essentially new relative to the

incompressible case, and we can quite generally suppose that

for this reason alone, statements concerning the one case

cannot be applied to the other. We shall cover this point

in greater detail below, however.

2. Energy Dissipation

In derivations of the theory of incompressible turbulence,

it has generally been necessary to introduce a similarity

postulate, such as in the following form: "If L is the /378

diameter of the largest and 10 is that of the smallest

turbulence elements, then within the orders of magnitude

characterized by 10 << 1 << L, the magnitude of energy which

is dissipated (per g and per sec) from elements on the order

of 1, e.g. to elements on the order of 1/2, should not be a

function of 1." We offer the two articles by Chandrasekhar

cited above [3, 4] as an example: while the hope is expressed

in the former article that such a similarity statement would

not have to be postulated in the future, but could be derived,
it still had to be expressly postulated in the second article.
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For clarification of this point, ,let us consider the

derivations of formulae in [3, 4]. Use has been made of the

principles of continuity and the conservation of momentum,

but not that of the conservation of energy. And it appears

evident that we cannot obtain an unequivocal description of

reality from just the former two principles. Thus the

principle of the conservation of energy must also be employed

in some form. Its use in direct form would probably mean

studying the processes of energy dissipation in detail and

building up the entire field of turbulence stepwise, start-

ing with the smallest elements. And this rather tedious

approach could only be avoided if the introduction of simi-

larity postulates proved to be adequate and successful.

Whereas the introduction of a similarity postulate

possessed some quite plausible features, this is no longer

the case for high Mach numbers. Due to the occurrence of

shock wave fronts of all orders of magnitude, a portion of

the energy is converted directly into heat from each order

of magnitude, not just via the smaller and smallest elements,

as before. It might be possible to take these circumstances

into consideration with a modified form of the postulate, but

we also wish to point out another objection (and one which

appears more serious to us).

Let us consider the magnitude and the whereabouts of

the dissipated energy. If turbulence elements of diameter I

have velocity w relative to their surroundings, then almost

their entire energy is dissipated during time Z/w, i.e.

about (1/2)w 2 (erg/g). Except for factors on the order of

1, dissipation S (erg/g.sec) amounts to

S = w3/1
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(Since, in the case of incompressibility, S also may not be

dependent upon 1, according to the similarity postulate, we

obtain the Kolmogoroff spectrum of turbulence from this:

w ? 11/3.) After passage through smaller and smaller elements,

this energy is finally converted into heat. A corresponding

input of energy to the largest elements is then necessary to

maintain a steady state.

In the incompressible case, M << 1 also implies: turbulence

energy << thermal energy. This means, however, that the

increase in thermal energy caused by dissipation is relatively

small, and the resultant timewise increase in temperature can

be neglected.

This is no longer the case for M > 1. Turbulence energy

is now greater than thermal energy, and the increase in thermal

energy during time 1/w is greater than its original magnitude.

Expressed in clearer terms: if I stir the gas in a vessel /379
around at supersonic velocity, the temperature will have

risen in just two or three rotations, due to dissipation,
to such an extent that the sonic velocity has now become

higher than the velocity of stirring (M < 1). Thus a steady

state with M > 1 can only be maintained if provisions are
made for extremely rapid removal of the thermal energy generated.

In practice, this removal of energy takes place via

radiation from within the shock waves. And since the shock

wave fronts of all orders of magnitude will radiate energy,
it appears reasonable that a statistical analysis of the

state of motion could only be possible if express considera-

tion were given to the presence and the effect of shock wave
fronts.
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In order to illustrate this statement, we finally point

out that for M > 1, the spectrumidf turbulence (or a law

corresponding to it) must be a function of the ratio between

the energies which are radiated by shock wave fronts of

different extent. And this necessarily leads to a detailed

consideration of processes within the shock wave fronts.

Let us insert an additional remark here. The rapidity

of energy removal through radiation which is required for a

steady state with M > 1 should only be possible with complete

ionization, i.e. at front temperatures of TF > 10,0000 K. For

M >> 1 and atomic hydrogen, TF is related to front velocity V

in the case of no radiation, according to formulae (2) and (3),

by

T =22.5 V2 TinK -

IV in km/sec.

It follows from this that a steady state with M > 1 should

only be possible for velocities above 20 km/sec.

3. Working Program

The following program was worked out for v. Weizs.cker's

study group on the basis of considerations such as the above:

a) First, treatment of the problem of the strong, non-

steady, planar shock wave front which (as the simplest

case) moves in a quiescent region ahead of it of

constant density.

b) Study of the radiation of energy from within the

shock wave, as well as its reverse effect on the dis-

tribution of density and temperature behind the front.
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c) Concerning additional complications, primary considera-

tion of the effect of magnetic fields.

d) The next problem concerns the various types of inter-

action between two shock wave fronts, first of type

a), as well as with the radiation of energy and

perhaps also with magnetic fields.

e) After clarification of all of these individual prob- /380

lems, an attempt to find a steady state whose charac-

teristics can be described completely and statistic-

ally for a field of shock wave fronts passing through

one another in unordered fashion in all directions,

at all velocities and of all sizes (with a suitable

input. of energy).

If it had proved possible to succeed all the way through

item e), we would thus have obtained a theory of turbulence

at high Mach numbers. It can easily bel.seen, however, that

this is a long and quite complex path to the goal being sought.

What has so far been achieved with this approach will be

briefly summarized here: Item a) can be considered to have

been completed. From almost any initial distributions, a
"standard front" develops after a brief period; this could

also be treated analytically as a homology solution of a

certain type. The class of homology solutions and the associ-

ated problem of transformation groups was studied in detail, as
well as the problem of the stability of the homology solutions.

Regarding item b), an article on stationary shock wave

fronts with energy radiation has been completed but not yet

published, and the same is true of an article on the isothermal

limiting case for nonsteady fronts.
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Regarding item c)., the effect of magnetic fields of

arbitrary strength and direction upon stationary fronts of

arbitrary strength has been completely covered.

Regarding item d), the interactions of two strong, non-

steady, parallel standard fronts have been calculated.

Along the lines of item e), a highly simplified model

has been treated by Monte Carlo methods in order to achieve a

first overview of the manner in which steady states can

eventually be established.

We shall report on the work outlined here in the follow-

ing sections.
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II. The Nonsteady, :Strong, Planar Front

The motion of a nonsteady shock wave front and the distri-

bution of velocity u, density p and pressure p behind the

front are described by a system of three partial differential

equations of the hyperbolic type, along with the boundary

conditions which apply at the front. Let t be time, x be

position (in the direction of the front's propagation), and

a subscript indicate the corresponding partial derivative.

Then, in Eulerian notation, neglecting viscosity and thermal

conductivity, our basic equations read

Conservation'of mass Qt + uIq + Q-, = 0

Conservation -of momentum, ut + uux + - = 0

Conservation -of -energy : pt + up. + xpu_ = 0

and, at the front, we have the following boundary conditions /381

for a strong shock (M >> 1) (e.g. see [51):

e= -- e = eo4 o
x-(2)

p= 2u = 3 u.

The number of boundary conditions is 1 less than the number

of basic equations because the front is reached by exactly one

characteristic of the region behind it, and thus only two degrees

of freedom remain. The position of the front in each case must

be calculated by the integration of an additional equation

V +1 4 (3)
S 2 3u

where p0 is density ahead of the front, V is the velocity of

the front itself, and K is the ratio of specific heats. With

10



a view toward our astrophysical application, we have used the

value for a monatomic gas, K = 5/3. We collect Eqs. (2) and

(3) under the heading "front conditions."

The problems associated with the above equations are,

first of all, of a technical mathematical1nature: the equations

are not linear, and the position of the boundary depends upon

the solution itself. Secondly, no specific solution has yet

been indicated by the equations used so far; we still require

initial distributions of u, p and p, or general conditions

which restrict the type of solution. Thirdly, we are not

interested in some special solution, but would like to obtain

as general information as possible in accordance with our

working program.

The intent of this section is to study the extent to

which the description of shock wave fronts can be simplified

mathematically in a physically reasonable manner in order to

ultimately formulate general statements. Onecsuch possibility

is the elimination of certain types of solutions by reducing

the system of partial differential equations (1) to a system

of ordinary differential equations by means of a separation

theorem (compatible with the front conditions). This approach

yields so-called homology solutions. For them to be physically

meaningful, the values of u, p and p must remain finite for

all finite x; and if it is to be of interest to us in terms

of our problem, a solution must be stable (neighboring solu-

tions must osculate with increasing time). If both require-

ments are satisfied, then it can be hoped that this type of

solution is approached asymptotically from various iritial

conditions and thus represents a useful description of

shock wave fronts occurring in nature.
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A second possibility consists of the direct numerical

treatment of partial system (1) by allowing the widest variety

of initial distributions to follow their course and observing

whether they become more similar to one another with time and
approach a common form of solution. Both possibilities were
tried at Gottingen, and their joint result was given the name /38
"standard solution.""

To avoid having to again interruptlthe presentation of

the homology solutions, we wish to begin with a description of

the second possibility.

A. System of Partial Differential Equations With Ihiti l Con-
ditions

1. Computatioh Method

The development of various initial distributions with

time was studied in an article by Hain and v. Hoerner [6].
It was first necessary to determine here whether to use
Eulerian or Lagrangian coordinates for this purpose. For

adiabatic gas motion without external forces, a Lagrangian

representation would actually be the more natural and more
appropriate mode of description, since entropy then remains

constant in the time direction, and since direct use is made
here of the concept of particle trajectories and the fact that
they cannot overlap. It was found, however, that the formula-
tion of boundary conditions then becomes more complex and that
their numerical treatment requires involved and time-consuming
operations. This is because the Lagrangian coordinates are
totally unsuitable for describing a front through which matter
passes (in a quantity determined only by the solution itself).
Thus after several attempts, we gave preference to the Eulerian
representation.
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The next question is whether to calculate with a uniform

time interval, or along characteristics.- Since we also need

the positions of the characteristics in the former case, for

the stability of calculations, and since the only computer

available at that time, G 1, is better. exploited with the

characteristics method, the latter was given preference. The

distributions of u, p ,and p sought at fixed times were then

obtained by linear interpolation within the network of char-

acteristics.

It was more convenient for computation here to replace

the dependent variables p and p with the variables a and s

(sonic velocity and normalized entropy),

a2 =--, S= I

System (1) then reads

/ ut + uu, + yo aa. + y a2 8, - 0

at + ua o + au. 0 (4)

s + us z =0
where

2 1 9
Yo 3 and 7y, - - (5)x - 1 x (x - 1) 10

The two boundary conditions now read /383

a = y 2 u and s=y3 21n (6)

where5 and (x I
Y2 and [ (7)

while the third front condition (3) remains unchanged.
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System (4) has three real characteristics, whose direc-

tions are found to be

C+ = u + a, C- = u - a, Co = u (8)

The remainder of the approach can only be outlined briefly here.

The hodograph equations were used in differential form along.

the characteristics; each C+ characteristic was calculated

all the way from the initial distribution to the front. Then

the next starting point on the initial distribution in each

case was selected in such a manner that the changes in the

front values did not exceed a maximum quantity. Second-order

calculations were made; the method is described in detail in [6].

2. Testing for Homology

We investigated whether, with increasing time, the solu-

tions so calculated approach an approximately constant form.

As we shall show in Section B2, this amounts to the question

of whether the solutions approach one of von Weizsdcker's

homology solutions [5]. Making use of von Weizsdcker's

homolgy theorem, we can also formally assign a value k of the

homology parameter to every point (x,t) in any arbitrary (non-

homologous) solution, and the existence of homology is indi-

cated by k(x,t) = const. The system of equations for those

quantities from which k(x,t) is calculated is overdetermined

here; with an adjustment we then obtain both k(x,t) and a

measure of error o(x,t). For homology we must require not

only k(x,t) = const but also a(x,t) = 0.

3. Results

The first question is, for what type of initial distribu-

tion can we expect a development of .constant conditions, since

almost any arbitrary timewise front behavior can ultimately

14



be produced by a suitably selected initial distribution.

Although it cannot be stated precisely in mathematical terms,
it appears evident that constant conditions can only develop

from arbitrary initial conditions (if at all) if the region

to the rear is also largely determined by the front, alone.

Thus no appreciable resupply of momentum may occur from the

rear. For this reason, all examples calculated were selected

in such a manner that the resupply of momentum to the rear is

somehow limited, e.g. by a steep dropoff in velocity, density

or temperature. Within this one condition, however, the

examples have been selected with the greatest possible variety. /384

In practice, this means that we allow a single fast cloud of

finite extension to the rear, behind which no other cloud

is following, to enter a quiescent gas of constant density.

Overall, nine examples were calculated, three of which

are shown in Fig. 1. In all nine cases, the timewise behavior

of k along the front, k(X), initially exhibits pronounced

fluctuations but, after a relatively short time, gradually

assumes a constant value, which was found to be the same

for all examples and averaged k = 0.39 ± 0.01. The next test

was to also calculate k(x,t) for the region behind the front.

The result was the same: after initially pronounced fluctua-

tions, the constant (in terms of space and time) average value

of

k = 0.390 ± 0.006 (9)

was eventually assumed.

For the third test, Fig. 2 shows the curves of a(x,t)

averaged over all calculated examples, indicating deviation

from homology. The times used here 'were determined from the

frontbehavior of k (rightlside of Fig. 1) as follows:
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T tl = time of greatest
deflection of k(X)

S4 0 
- o2 7 t2 = time at which k(X) (10)

= 0.39 reached
, .const k

b) t 3 = latest possible
S6 point in time,

'- I5t 2

3 2 1 2 -1 0

.,,We see from Fig. 2

8 c) that the feasibility of

Srepresentation by means

2  of a homology solution

-- /ogt decreases with increasing

distance from the front
Fig. 1. Left: three arbitrarily
selected initial distributions for each fixed point in

of density, velocity and tempera- time and increases with
ture behind the front. Right:
the resultant time curves of the increasing time for each

(formally defined) homology para- fixed front distance. /385
meter k along the front. From [6].

The homology solution

which is approached is

thus gradually assumed

a with time from the direc-

410% tion of the front. (The

e o0 residual value a = 1%

corresponds to computa-

Fig. 2. Deviation a(x,t) from tional precision).
homology, averaged over all nine
calculated examples, at the time
points defined by (10). The x- In addition, the
scale is always normalized so
that ux/u assumes the same value osculation of the region
at the front. From [6]. behind it to the approached

homology solution was

followed graphically for all examples. E.g., Fig. 3 shows

temperature curves at various times for the first of the

distributions in Fig. 1. We see how the homology solution de-

velops; from the direction of the front.
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4. The Standard Solution

I4 r Our results are thus

as follows: The same homolo-

s gous solution (k n 0.39) is
S 2  always approached in all nine

// cases calculated. This solu-

/ .tion, which was always

approached in the absence of

..-.- a resupply of momentum, was

given the name "standard

s 4 3 2 0 solution." While it had
_X

previously been assumed that
Fig. 3. Temperature of the all plane homology solutions
region behind front ((initial
distribution in Fig. la) had singularities for finite
approaches the standard solu- x, the standard solution
tion with increasing time.
Front temperature is always exhibited a completely regular,
normalized to 1; x-scale as smooth shape even very far to
in Fig. 2. From [6].

the rear. Inspired by this,

Hafele [13] found the singular solution to the homolgy equations

described in the next section, which remains regular as the

one homology solution for all finite x.

One of the examples calculated was followed to long times, /386

in large time intervals (computational outlay increases with

the square of time!), and was then compared with .Hafele's

solution. Figure 4 shows the results: within its computational

precision, the distribution which is assumed is identical with

Hdfele's solution.

In explanation of Figs. 3 and 4, it should also be men-

tioned that all quantities have been normalized in terms of

their front values. The x-scale has been normalized in such

a manner that the derivative of normalized velocity with

17



B- respect to position is

099 ' z always given the same value

S0, 7 - 7at the front. This nor-

malization was introduced

, so that various distribu-

20, - tions could be checked for

,1 similarity.
7 5 4 2 1

In the search for as

I _4_ . simple a mathematical

description of the standard

". solution as possible, we

t7 _were initially struck by

the almost linear curve
Fig. 4. The distribution assumed of velocity. Moreover
(from an arbitrary starting dis-
tribution) at two time intervals: the following are good
+++++ t = 8.9; ..... t = 16.8.
Standard solution according to
H~fele plotted as heavy curve normalized (as described
for comparison. From [6]. above) quantities:

( + -3 (11)

and
p = eo.0  1  (12)

The question of the "linear solutions" raised here will be

treated separately in Section C.

B. The Homology Solutions

1. The "Block Wave"

In order to achieve a first, rough overview of the manner

in which the velocity of a strong shock wave front left to

itself decays, Von Weizsacker [5] represented the front and

the region behind it schematically with a "block" of spatially

18



constant density p and gas velocity u, assumed to be. of finite

thickness d perpendicular to the front.. The region ahead of

it is assumed to be quiescent and of constant density. Due

to front conditions (2) and (3), p = const and. V/u = const

while, due to the accumulation of matter (of the region ahead),

u and V decrease with time and d increases.

For the accumulation of matter, m = p(V - u) = const.u,

where m is the mass of the block per cm 2 front area, and the

correspondingly defined momentum of the block is J = mu. The

requirement of the conservation of momentum is thus

J = nau mi = const. u 2 + itJ/u = 0

or
u = - const - U (13)

and, integrated, with V - const.u,

con stV (1 - (14)

If we impose the requirement of conservation of energy, /387
mu 2 = const, however, then instead of the above, we obtain

const

(t - to)'./. (15)

The difference in the two exponents shows the shortcomings

of this model; the form of dependence upon time, which is common

to both results, suggests, however, that an expression of the
type

const
V (t) (t - t (16)

could also be successful for an exact treatment of the problem.

We will see below that this supposition proves correct (with
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k = 0.389) and was thus able to indicate the proper approach

even for this rough model.

2. General Derivation of the Homrrilogy Theorem

Von'iWeizsacker proceeds directly from the statement sug-

gested by [161, which he extended in a corresponding manner

to the region behind the front, making use of the spherically

symmetrical homology theorems of Taylor [7] and Guderley [8,

9]. We wish to present a derivation of the homology theorem

here, however, which starts only with a very widely applicable

physical requirement and which is kept as general as possible,

so that its result can no longer appear in any manner to be

an arbitrary mathematical statement.

We are actually interested in the question of whether a

type of solution exists which, starting from various initial

distributions, is always (or under certain conditions)

approached asymptotically with time. If this is the case,

then the solution should remain similar to itself from there

on. Let this be our physical requirement, and the next

question is how we are to formulate this similarity require-

ment mathematically. We wish to keep the theorem just as

general as possible, and we believe the least that we must

require of a solution which "remains similar to itself" to

be the following:

The functional relationship between the quantities
u, p and p, normalized with their front values, (17)
shall be the same at all times.

If we call X the time-dependent position of the front,
then this means

i g (18)
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where

U= u(X), R= (X), P= p(X).

(If not otherwise expressly noted, we wish to adopt the con-

vention that large letters shall always be functions of time

only.) This requirement is identical with the following

formulation:

The values of u, p and p at one time should result from /38

the values at another time via an arbitrary (not necessarily

linear!) time-dependent scale transformation of u, p, p and x.

Or, in formulae,

S(x, t) = R () r(5)

p(x, t) = P(t) .p()

with, = $ (x, t)
j(X) = const = c,

where E is an arbitrary function of position and time which
always assumes the same value c at the front.

If we now also take the three front conditions (2) and (3)
into consideration, our homology requirement finally reads

e(x, t) = r(s)
(1 

(20)

p(x, t) = - U2.

If we agree to assume density po = 1/4 ahead of the front,
then

r(c) = p(c) = t(c) = 1 (21)
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We now apply our .statement .(20) to differential equation

(1) and obtain the .following (the prime symbol indicates deri-

vation with respect to. E):

U + r' + r' = 0

U U' f 1 V3 + pp ' 0  (22.)

U$, U2 1 + +

Since r, i and p are supposed to be functions of 5 only,
the requirement of separability means that

g'($) and h($) (23)

are also functions of 5 only, which we label g' and h. If,
for the purpose of abbreviation, we define

w = 1/U,

the first requirement yields /U,

W= g'() ~.

Integrating over x, with B as an arbitrary time functio4,,,we /389
obtain

Wx + B = g(),

and if we call y the inverse function of g, then

$ =y(Wx+ B).

Since E only occurs as the argument of arbitrary functions,
however, it is no limitation on generality to state the follow-
ing identity for the arbitrary function y:

= +Wx B. (24)
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Without our having required it at the startt, we thus find

that the scale transformation must be linear in x.

When (24) is used, the second separability requirement

reads
W(Wxx + B)- h(B ) = h (0W x + B),

and since the left side is linear in x, the right side must

likewise be:

h(TWx + B) = aWx + aB + b; a, b = const.

By a comparison of coefficients with the left side, after

double integration over t (0 3 a 3 1), we obtain

W = const - (t - to)/( -a), W = const. Wja, B = const . W + const.

Our result thus finally assumes the form

x-x U0 .
(tto) -k and U= (t-- 1 k , (25)

where we have set k = 1/(l - a); x0, t0, UO and k are constants.

We note that k is the only important constant here (= homo-

logy parameter); for the excluded values of k, we also add

the solutions which result instead of it and obtain

Type U(t) ((x, t)

a. General t- k x t - a -

b. (k = 1) t -  x Int (26)

c. (k = oo) e±t  xze t .

Formula (25) is precisely von Weizsicker's homology theorem,

which we have derived here from physical requirement (17), kept

quite general.
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It is interesting that we can obtain the same result from

a completely different and purely mathematical starting point.

Thus von Hagenow [101., proceeding from Lie's theory [ll] and

an article by Lax [12], studied the invariance of the basic

equations (1) relative to infinitesimal transformations of /390

the dependent and independent variables. Through the rela-

tionship between invariance properties and separability, von

Hagenow obtains the totality of all separation theorems which

follow from the invariance properties of (1). If we pick out

only those theorems which are compatible with front conditions

(2) and (3), we get precisely our three forms (26.), while the

remaining five cannot be employed to represent shock wave

fronts with a constant region ahead. Thus for all five of

the remaining theorems, foreexample, temperature is a pure

function of E and would therefore be constant with time at

the front.

An additional result of von Hagenow's work is the follow-

ing general statement: A separation theorem is always com-

patible with the front conditions if the region behind and

the region ahead of the front can be separated on the basis

of the same theorem. It should also be noted that we obtain

homology solutions only in the limiting case of the strong

front; at least, derivations and theorems have not so far

been possible for the case of general front strength.

3. The Homology Equations

The reduction of system (1) of partial differential equa-

tions to a system of ordinary differential equations is

accomplished by also substituting (26a) into (22), as von

Weizsdcker does [5]. Overall, we have thus substituted

statement (20): and the resultant special form (26a) into

basic equations (1). We obtain the system
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[Q- (1 - k) ] .r' + rq ' = 0+1

-- -+- 0 --- 03 r (27)

[ - (1 - k) f]. V' + 5 WP' - 2k = 0.

This notation differs formally from that in [5] somewhat,

but is identical to it. Comparison with thei.similar formula-

tions by Guderley [9] and by Courant-Friedrichs [14] is

carried out in [5]. System (27) was integrated numerically

for various k by von WeizsHcker, three different types of

solution being obtained.

H~fele continues the analytical treatment of (27) in [13],

starting with a method developed by Guderley and applied there

to the spherically symmetrical case [8]. The decisive aspect

of this method is the reduction of system (27) to one first-

order differential equation and two subsequent quadratures.

We introduce the new dependent variables1 (n = 1 - k)

M, -~and (28)

while only ln r: is used in place of the third dependent /391
variable. We replace the derivatives with respect to E with

those with respect to In E . If we substitute this into (27),
a system of equations for the functions v, p and Inr results

in which the coefficients of the derivatives are functions of
v and p, only, not of r and E. The first of equations (27),
for example, becomes

Here, p is related to sonic velocity a by
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dlnr dv (29)
(V - 1) +  v = 0,

while the two other equations assume similar forms, but become

so complex that we do not wish to present them here. This

property of the system, that its coefficients are functions

of p and v only, has the consequence that a differential

equation in p and v can be obtained. It is given in Hfele

such that spherically symmetrical and cylindrically symmetrical

cases can also be covered; we merely wish to formulate it here

for the planar case in which we are interested,

i_ ' f{ x(v - 1) + n'} + (v - 1) + - v -(30)
djs I 2n 2 n (30)
dv v- 2 (xv+12n)-v(v-1) (-

where 1
n=1 -k and n' = 1--

n

With a suitable choice of density in the region ahead

of the front, front conditions now take the form

v = 2/(x + 1) = 3/4 (31a)

S= J/2x(x - 1) /(x + 1) = /5/4 (31b)

In-r = 0.

This means that all solutions which represent the region

behind a strong front pass through a fixed point A in the p,v

diagram whose coordinates are a function only of the ratio

of specific heats K.

The variables V and v introduced in (28) are indeed

suitable for a certain region behind the front, but not in

the vicinity of 5 = 0. For this reason projective coordinates
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are introduced, as in Guderley, with

U = x/x 3, v = x21x3 , x3 = const - x,1/3 + x 2/3, (32)

from which a quite complex differential equation of the form

dx2/dx = g(x,, x, z3) (33)

is obtained, which can be referred to in [13]. The variables

xl, x2 are in turn undefined within a certain region lying

very far behind the front, however, so we must again use

variables V,v here.

Thus either system (27) or the alternate. usem(depending /393

upon region) of Eqs. (30) and (33) can be selected for

integration. If we only wish the solution for certain values

of K and k, then the integration of (27) is to be preferred.

On the other hand, representation on the basis of (30) and (33)
is particularly suitable not only for obtaining an overview

of the totality of possible solutions but also for ascertain-

ing whether a physically regular solution is available.

4. Types of Solution

a) Front Behavior. In order to provide ourselves with a

qualitative overview of the various types of solutions, we

first consider the behavior of the front itself. According to

expressions (20) and front condition (3), front velocity V(t)

has the same form as U(t) in (25). We immediately see from

(25) that the front is accelerated for k < 0, moves at constant

velocity for k = 0, and is decelerated for k > 0. We thereby

obtain the first line of our overview in Table 1, which has

been compiled from [5, 13, 17].
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TABLE 1. THE VARIOUS TYPES OF HOMOLOGY SOLUTIONS. /392

Parameter Value k<" i (= o<:<,/ k=, <k<k kko ko<k<l k=1 >

ac-
The front is ele 'r- stead decelerated

ated

from xo - xo - -
Eront ioves . t6 + + 00 + 0 + 00 x0

Regiofdi &h .hd.B o nt
on separatrix .. ./. ./. II II

via / P2,3 Reversal line
Convergencer ./.

toward: P, P. P,
F-4 Rear---b Rouridai- Impenetrable wall Vacuum Revers all:, ine

Velocity >0 >0 =0 <0 - <o =0 >o

Function T = 0, = o , p, T finite,
values = const p = const, p = o but

![Note: ./. = not applicable.]

The second line gives us the path covered by the front;

we obtain it simply by solution of (25). Since we are inter-

ested only in decaying fronts, further discussion will be

restricted to k > 0.

b) The Directional Field of Equation (30). Further

differentiation among various types is only possible if we
consider the region behind the front, particularly its rear

end and the singularities which occur there. For this pur-
pose Hafele [13] gives the directional field of differential

equation (30), both in the p,vvcoordinates and in projective
coordinates (32). The reader is referred to the extensive

study by Hafele- regarding all details. We have taken our /394
Fig. 5 from the article [13] to provide a rough overview.
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x2t

/ f We see five singu-

' arities in Fig. 5. In

I- ,- general, both the posi-

- - tions and the character

. of the singularities

vary with K and k, so

quite different types

of directional fields

apply, for example, to

various domains of k.

In his (unpublished)

" dissertation, however,

Hafele made a precise
survey of all possi-

- - bilities and found that

a physically regular
Fig. 5. Directional field of dif-
ferential equation (30) in projec- solution which is of
tive coordinates, from (33). For special interest to us
k = 1 - n = 0.38927, front point
A lies on separatrix II. The stan- can in any case only
dard solution begins at A and exist in the directional
follows separatrix II through

P2,3 to P8 . From [13]. field associated with

the region

x--1 5
< k< - - - '' i. e; 0,25 < k < 0,454 for= 5' (34)

t +2 3

Figure 5 applies to this region. The front itself is repre-

sented by point A. Since the coordinates of point A are a

function of K, and the behavior of the solutions is a function

of K and k, the following different possibilities exist for

the position of A in the field of solutions, depending upon

the choice of the two parameters:
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A lies.:

1. to the right of separatrix III

2. on separatrix III

3. between III and II

4. on separatrix II

5. to the left of II.

The solution which passes through A here proceeds toward

P6 in the first three cases, via P2 ,3 toward P8 in the fourth

case, and toward P4 in the last case. The path toward P4 leads

over the line p + v = 1, however, which represents a reversal

line.

c) The Nature of the Singularities. The problem of the

reversal lines is treated extensively by Tollmien [15, 16]

and Guderley [9] and is summarized by .Hafele in [17]. The

type with which we are dealing is merely designated "reversal

line with expansion"; it cannot be realized physically with

any initial and boundary conditions. In mathematical terms,

it is characterized by the fact that, for constant t, the

solution cannot exceed a certain kc and becomes a closed curve,

i.e. becomes two-valued. A clear, but inexact, representation

would be that in which matter is sucked up from the rear at

xc. To be exact, however, this would have to occur at super-

sonic velocity, but this is physically impossible. Thus case 5

must be ruled out for our program.

On the other hand, let us consider the convergence of

solutions toward P6. According to .Hafele, this point is

located at E = const, i.e. at finite x. At it, p = 0, p =

= const and T = -. From the fact that temperature becomes

infinite2, Hafe.le. calls. P 6 an ."energy resupply.." .. We .do not

2In [20], Hdfele presents a solution which approaches P6 with
finite temperature. It does not satisfy..thefront conditions,
however.
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consider this to be .totally correct. Since pressure equaliza-

tion has already occurred (p = const). and since. thermalncon-

ductivity is neglected in all cases, no thermal energy is /395

likewise introduced at P6, We would rather derive another

interpretation of P6 . To this end we'study the question as to

whether matter passes through P6 or not. We designate gas

velocity at P6 as U6 and the velocity of point P6 itself as V6 .

1. Convergence toward separatrix III. Since x2 = 0,

then, with (32), v = 0. With (28) and (20), we then also have

U6 = 0. According to Hafele [13], = 0; i.e., from (25),

xg = const = 0 and thus V6 =0. We thus obtain U6 = V6 ; no
matter passes through P6.

2. Convergence with v = 1 (Fig. 5). According to Hafele,
S= const (= 6 ) here; by differentiating (25) we obtain

V, = (1 - k) - $6t k .

On the other hand, v = 1 and E = const yield, in accordance
with (28) and (20),

U6 = UO(1 - k) . 61/k.

By substituting (28), (25) and (20) into front condition

(3) -- and by comparing the result with (31a) -- we can seeO
that v is normalized in Hafele's article in just such a manner
that it presumes the normalization of U0 = 1. Thus here
again, and thus in all cases,

U6 = V6  (35)

We can therefore interpret P6 as a rear boundary consisting
of an impenetrable wall. Since this wall is motionless at
k = 1/3 (since v = 0), this case is suitable for describing
shock waves produced by planar explosion at a fixed wall.
(The corresponding case of a spherical explosion has
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been solved analytically by Taylor [18)]. In [19], Culler and

Fried point out the possibility of approximating conditions

in a shock tube with this solution, k = 1/3.

We must rule out convergence toward P6 for the problem

associated with our program, however, since no fixediwalls

exist in the cosmos. We must look for a solution which repre-

sents free flowoff to the rear. The only solution with this

property is, according to Hafele, separatrix II, which we will

cover in the next section.

5. The Standard Solution

If we wish to avoid convergence toward Pg, we see from

Fig. 5 that the solution must cross the line p + v = 1. This

is only possible in a physically regular manner, however, at

singularity P2,3, i.e. only on separatrix II. The numerical

solutions (for various K) obtained by Hdfele go past P2,3
quite smoothly for p, p, T and u, and further convergence

toward P8 can be interpreted as free flowoff into vacuum.

Hafele was even able to give the analytical solution for

the special value K = 7/5 (close to the value applicable to

air), which we wish to show here in abbreviated form for fixed /396
time,, only (a = const):

5a

T 1i + a 
(36)

p - (P + a )-'.

The value of k associated with separatrix II will be called k
below. For K = 7/5 we obtained k° = 2/5 = 0.4.
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Quite extensive. computations were necessary for other

values of K: With various values selected for k, integration

was carried out from A until the solution turned to the right

or left in front of P2 ,3; we were thereby able to gradually;

approach k o . Table 2 shows the results.

TABLE 2. HOMOLOGY PARAMETER ko FOR THE STANDARD SOLU-
TION WITH VARIOUS SPECIFIC HEAT RATIOS K.

1,1 0,43112 ± 0,00001
1,4 0,4
5/3 0,38927 ± 0,000005
2,8 0,373296 ± 0,000005

We have already shown the distribution of u, p and p in

the standard solution in Fig. 4 for K = 5/3. It is tabulated

in Hafele [13], and the distributions are also shown there in

the form of figures for other values of K. Behind the front,

u, p and p always decrease monotonically, while temperature

increases sharply for small values of K, only gently for K = 5/3,

and decreases monotonically for K = 2.8. A striking feature is

the curve of velocity u, which in all cases is almost (for K=

= 7/5, exactly) linear and whose slope is also only very

slightly dependent upon K. We shall return to this in Section C.

Singularity P2,3 is not distinguished by anything in the

distribution of u, p and p, 3 but is in the pattern of charac-

teristics. All C+ characteristics passing through the front

and P2, 3 reach the front after finite time, whereas no charac-

teristic from the region behind P2,3 reaches the front. This

means, however, that the front is no longer in any way affected

by the region behind P2,3.;. thus. the b.ehavior. of the front. is not

31n Fig. 4, P2,3 is at x = 6.4.
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affected by how the solution is continued behind P2 ,3. And

since P itself moves along a C+ characteristic, the entire
2,3

region lying between P2,3 and the front is unaffected by the

region behind P 2,3. (Provided only that, say, additional shock

wave fronts are not generated behind P2 ,3 .) We have thus come

closer to the question posed in Section II,A,3: "From what /397

initial distributions can a standard solution eventually be

assumed?" The answer is: "When a C+ characteristic which only

reaches the front at t = - begins within the initial distribu-

tion selected." We cannot immediately see whether this is the

case or not from the initial distribution, and we must thus

be satisfiedywith the qualitative condition of no resupply.

C. Linear Solutions

1. Starting Point

We pointed out in the preceding section that the standard

solution which is eventually assumed exhibits a velocity curve

which is approximately linear in x for all values of K for

which calculations were made. The curve is in fact exactly

linear at K = 7/5. Thus the question arises as to whether,

first of all, basic hydrodynamic equations (1) can be solved

generally with the additional requirement

u(x,t) = Ax + B (37)

(upper-case letters = functions of time only) and, secondly,

whether the "linear solutions" so obtained are suitable for

the approximate description of shock wave fronts. This has

been studied by the author in [21].

2. Results

It found that we can give the general solution to (1)

under requirement (37). We wish merely to present the results

here; they have the form:
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u (, t) = o + $ * y

e(x, t) = S - . (y) (38)
p(x, t) = S-'I. • (y)

where
y(x, t) = {x - uo(t - to)}/S.

Here, u and to are constants, and time function S is given by

=
5 / 3 = a = const (39)

D and T are functions of y; one of these is arbitrary; the other

is given by the relation

'/D = -ay (40)

It was also found that entropy is a pure function of y,

and this means that the lines y = const are "life lines"

(particle trajectories). We could thus also conceive of (38)

as a special separation theorem in Lagrangian coordinates.

Expression (39) is easily integrated. Depending upon the

choice of a and an additional integration constant 8, we obtain

the three general solution types 1, 4, 6 in Fig. 6, while dashed /398

lines 2, 3, 5 represent limiting cases. (Thus in the case of

solution 5, for example, u = 0 for t = c.)

The second striking

characteristic of the

" -"standard solution is that,

\ as a good approximation,

", pressure is proportional

__.l ___ 3 to a power of density for

-e -6 -4 -2 o 2 4 s 8 a very broad region behind

the front:

Fig. 6. Solutions to the Eulerian
equations with a linear velocity P ( x t ) = P(t)(pY, h)e
curve. The distance S between y = const; (41)
neighboring "life lines" is plotted
over time t. From [21]. we obtained y n 0.8. For
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this reason, a similar approach was used in [21] to study

whether the general solution to '(1.) could be given if require-

ment (41) were applied instead of supplementary requirement

(37). It was found here that (37) follows from (41) and (1).

This means, however, that the solutions singled out by (41)

are a subgroup of linear solutions. Thus (38) and (39) again

apply, except that now no function of y is arbitrary any more:

density is a power, determined by y, of an expression which is

quadratic in x.

3. Application

It was possible to show that the front conditions are not

compatible with requirement (37) except at K = 7/5; see (36).

The linear solutions are quite suitable, however, for an

approximate representation of the rearward region of the stand-

ard solution, especially its subgroup (41), which again holds

exactly at K = 7/5. For a linear solution, ux must be a constant

and, due to (40), (p /P)x = const likewise, while subgroup (41)

also requires that y = const. We ask how much these quantities

deviate from constancy in the case of the standard solution,

and give the magnitude of deviation in percent, relative to

the value applicable at the front, in Table 3. Velocity u has

been used as acomprehensible scale; it is normalized to 1 at

the front, drops off to the rear and becomes negative. The

region which is of interest for application probably lies within

the interval +1 > u > -1, in which density falls off by as

much as a factor of 30. Table 3 shows that within this region,

all. requirements are still satisfied relatively well. An

additional example of a linear solution is isentropic flowoff

into vacuum as treated by Burgers [22] and Pack [23]. If we

consider a quiescent gas of constant .density and entropy in

the half-plane x > 0 and vacuum in x < 0 at t = 0, then a

widening transition zone propagates on both sides of x = 0 for

t > 0, in which velocity is a linear function of position.
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TABLE 3. DEVIATIONS IN THE STANDARD FRONT AT K = 5/3 /399
RELATIVE TO THE LINEAR SOLUTIONS.

XE u (7/I)L -

0 + 2% - 6% + 1,3(%
- 1 + 4% - 24% + 2,3%/
- 3 + 7% -47% +4,0%
- 10 +11% -- 83% +6,2%

In summary, it appears as if flowoff processes into the

vacuum exhibited the general tendency toward linear flowoff,

slighly perturbed under some circumstances by boundary condi-

tions not compatible with it.

D. The Stability of the Standard Solution

A solution will be considered stable if neighboring solu-

tions approach this solution asymptotically with increasing

time. It was found in Section II,A,3 that all nine quite

varied initial distributions actually do approach the standard

solution asymptotically; this can be taken as a strong argument

in favor of its stability. On the other hand, this type of

"experimental mathematics" is of course not capable of providing

real evidence of stability. The purpose of this section is thus

to seek analytical evidence of stability. Since this question

cannot yet be considered satisfactorily answered, we shall cover

it only briefly.

1. F. Meyer's Treatment [24]

For the purpose of analyzing the timewise development of

any solutions, F. Meyer introduces the derivatives with respect

to position, made dimensionless, at the particular front position:

a = (uzz UUs) Front

= (Ux r 2/i4) Front (42)

S=-- (u 4 U.'/u) Front
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as well as the derivative, made dimensionless, in the direction

of the front curve,

The system of ordinary differential equations can then be

derived (for K = 5/3) from basic equations (1) and front condi-

tions (2) and (3):

da
- - 0,416fl + 0,8a 2 - 1,35a - 0,0519

d _ 0,41 + (1,2a - 1,31)fl - 5,21 a2 - 0,355a - 0,0205.

Both (42) and (43) could be taken to derivatives of any /400

order. However, the equation for the nthl!derivative always

includes the (n+l)th derivative, so the variation in the

highest derivative can never be calculated. A number of

studies by Meyer have shown, however, that the higher deriva-

tives have only a very slight effect on the low-order deriva-

tives, so, for estimating conditions, it appeared reasonable

to break off series (42) at y, and to consider y constant

in (43).

We can now formally assign a homology solution to any

solution by requiring agreement at the position of the front

for all first and second derivatives (precisely all free para-

meters of the homology solution are then used up). Homology

parameter k is determined by

1/k = 13/5 + (9/10)a (44)

If the solution to be studied is a homology solution, then

a= const and B = const

must hold.
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We show the directional field for system (43) in Fig. 7.

The heavy lines are separatrices; the perimeter is infinite

distance on the a,8-plane. Let us consider singularity P1.

It is characterized by the fact that da/dn = 0 and dB/dn = 0

at it. Thus, due to the constancy of a and 8, it represents

a homology solution. In addition, only solutions entering it

exist, none which leave it. This means, however, that all

neighboring solutions approach the solution represented by P1
with time. P1 thus represents one (and indeed the only)

stable solution. In actuality, y will of course vary with time,

in a manner which is not determined by the method applied. But

even if we consider y to be constant, the position of point P1
still depends upon the choice of y, and the same then also applies,

with (44), to the resultant k. Since the relationship k(y) is

only a very weak one, however, the uncertainty of k is likewise

only slight. If only relatively small values of y are con-

sidered, Meyer ultimately finds that

k = 0.39 + 6% for -1 < y < +1. (45)

In spite of its short-

coming (constancy of y),

this method is thus capable,

first of all, of providing

a good approximation for

ko (ko = 0.38927 ± 0.001%,

from Table 2) and, secondly,

of indicating the stability

of this solution. This,; /401

Fig. 7. Directional field for too, is of course not a

system (43). The stable solution proof in the strict sense;
is represented by singularity Pl' the convergence of the
From [24].

method could not be demon-

strated for the inclusion of higher and higher derivatives in

(42). Moreover, the following is still..unsatisfactory: We know
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from the preceding sections that one physically regular (supposedly

stable) solution exists, as well as a unidimensional variety of

other (possibly unstable) homology solutions. The one stable

solution is included in Fig. 7 (Pl), but not the variety of

other homology solutions. For each value of a (and not just

at the additional singularities P 2 and P3), there should exist

a solution with the property da/df = dB/dn = 0. The reason

for this lies in the arbitrary establishment of a specific

value of y.

2. Ha fele's Treatment [17]

Since we believe we can refute the validity of .Hafele's

results by means of a counterexample, we merely wish to outline

the rather complex derivation quite briefly here; we refer the

reader to the original article [17] regarding all details.

In order to be able to better follow the transition from

a general solution to the homology solution being sought with

regard to the equilibrium establishment process, Hdfele chooses

a notation similar to that of homology solutions (20) and (25)

or (28). And if it is thereby to be possible to also describe

general solutions, it is necessary, first of all, to set

n = n(t). (46)

Secondly, Hafele replaces homology variable E with a quantity

¢, which we wish to call E* here, however:

(,0X = d (47)

At the front, once more,

0 = const. (48)

In the case of homology, n(t) = const, and thus E* becomes

identical to E in formula (25). Thirdly, the functions v and 1,
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defined in a manner analogous to (48), are also explicitly

dependent upon time via time function n,

= v(*,n), i = i(*,n); (49)

this dependence upon time vanishes again in the case of

homology.

Hafele also limits consideration to general solutions

which lie in the nonhomologous vicinity of standard solution

n = no and for which the following three conditions apply:2

A. The solution crosses the point p2 = (v - 1)2 , i.e.

reaches farther to the rear than the vicinity of P2,3'

B. No second shock wave front may be generated in the

region behind the first front.

C. In the vicinity of P2  av/an, aj/an and lnp/an

have the same sign as in the case of homology.

Under these conditions, H fele is then able to derive the /402

formula

dn/dt = (n - n ).e; e < 0. (50)

It states that if all assumptions are valid, n approaches no;
that a nonhomologous solution thus approaches.the latter.

asymptotically from the vicinity of the standaradsolution.

Counterexample. For clarity, we first establish

that, according to Hafele, time function n(t) is related to
front velocity V(t) by

V = nt"- 1. = const .nt-1. (51)
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Secondly, Eq. (50). states that if n = no at some time, then

n = n is also true at every later time. Thus. the value n
can only be approached by n(t), but cannot again be left by it.

As a counterexample we select the standard solution with a

small perturbation wave, moving toward the front, added in about

the center between P2, 3 and the front. Thus except for the small,

spatially limited disturbance, this initial distribution is

identical to homology solution no over the entire remaining

region. Conditions A and C should thus be satisfied. Moreover,

the perturbation is assumed to be small and "flat" enough to

also satisfy condition B. Thus (50) should apply.

We now consider the behavior of the front. During the time

in which the perturbation has not yet reached the front, the

behavior of the front is that associated with the standard solu-

tion. Thus during this time, n = no according to (51). At the

time at which the perturbation exerts an effect upon the front

and alters its velocity, according to (51), n / no . This

contradicts (50), ihowever.

Discussion. We wish to present two reasons for this

failure. First: it can be shown that statements (46) through

(49) are still not sufficient to describe general solutions.

Thus, in our example, n = const = no until the perturbation

has reached the front. During this time we also have E* =

(for all x) and, according to (49), v and U should then be

constant along the lines E = const of the unperturbed standard

solution (likewise for all x). Once a line = const is

reached by the perturbation, however, this statement becomes

incorrect.

Secondly, what condition C actually means appears to be

somewhat unclear. On the one hand, we could object that 8v/an
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is a time derivative in the nonhomologous case, whereas the

homology solutions are. constant with time. In the nonhomologous

case, on the other hand, the variation in v in the vicinity of

P is related via the derivative av/an to the variation in
2,3

n at the position of the front, in accordance with (51), which

does not appear to be very meaningful.

In [25], Hafele provides a proof of stability, carried out

in an analogous manner, for Guderley's [8] spherically sym-

metrical compression shock. Here, too, it is possible to raise

the same objections as those just discussed.

In summary, our critique can be formulated so as to show

that in the case of Hfele's theorem, the explicit time depen-

dence of the functions v, p and Inp degenerates not only (per-

missibly) in the case of homology being sought for all x, but

also (impermissibly) for every bounded time interval within /403

which front velocity temporarily follows a homology solution

for any rearward region. Thus the general solution cannot be

described with this theorem, nor the general vicinity of the

standard solution. To be sure, a special type of nonhomologous

neighboring solutions may exist which is covered by the theorem.

The proof of stability would be valid for this type if it

proved possible to clarify condition C.
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III. The Strong Front with Radiation Loss

We showed in Section I,1 that velocity u and Mach number M

fall approximately within the intervals

5 < u < 1000 km/sec, 1 < M < 100 (52)

for interstellar matter, and it was found in Section 1,2 that a

turbulence-like steady state with M > 1 is only possible if the

heat generated by dissipation is radiated off again at a sufficient

rate. Thus the purpose of this section is to study the radiation

process of fast shock wave fronts in detail, as well as the effect

of this radiation on the distributions of density and temperature

behind the front.

Radiation processes have already been treated by Pikelner

[261, but various hydrodynamic aspects were neglected. Hertweck

[27] therefore undertook a new treatment of energy radiation,

taking the hydrodynamic requirements into consideration; he re-

stricted himself to the case of the steady front. His results

were then to assume the role of front conditions for the non-

steady case, but this has not yet been undertaken.

Since radiation "cuts off" temperature, 'so to spek,

von Hagenow [28] studied the isothermal nonsteady front as the

limiting case of very strong radiation.

A. Hertweck's Treatment [27] of the Radiation of Energy

Hertweck treats the case of a planar, strong, steady shock

wave front which enters a quiescent region ahead of it of con-

stant density. Hertweck uses the following values for the density,

temperature and degree of ionization a of the region ahead:
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?no = 1 Atom/em3

To = 100 K (53)
, = 0,01.

Calculations relating to hydrodynamics and electron density

are made only with pure atomic hydrogen, while helium and an

admixture of heavy elements are considered with regard to radia-

tion processes.

The individual cross sections and radiation functions were

taken from the available literature and usually approximated by

simple interpolation formulae. The resultant differential equa-

tions were solved numerically. Since space considerations make /404

it impossible to discuss the extensive calculations and estimates

here, we merely wish to provide a rather qualitative description

of Hertweck's results.

1. The Front

As before, we consider the actual shock wave front to be only

the region of the thickness of several free path lengths within

which the translational energy (relative to themotionlesls front)'

of the matter in the region ahead is converted into thermal energy.

Since only a pure directional dispersion is involved, only a

few collisions are required for this. An energy loss due to

radiation or ionization can not yet occur, since the electrons

(at a given-velocity) have less energy, by a factor of mH/me = 1830,

than the hydrogen atoms and protons, and since the latter assume.

ionization cross sections on the order of 10- 1 6 cm2 only at

velocities above 1000 km/sec.

We thus obtain temperatures for the atoms and ions which can

be calculated from our own modified front conditions (2) and (3),

TA(O) = 22.5V 2 , (54)
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where front velocity V is to be measured in km/sec and the tem-

perature TA of neutral hydrogen atoms and protons at the position

of the front (x = 0) is measured in degrees absolute. If we

replace front velocity V with Mach number M = V/a 0 , we obtain,

TA(0) = To M2 (55)

where a0 = sonic velocity ahead of the front and T O = temperature

ahead of the front.

Density also jumps by a factor of 4 in accordance with (2)

without change.

2. Establishment of Temperature Equilibrium

Only a few collisions are likewise necessary in the case of

electrons for pure directional dispersion, but energy exchange

proceeds slower by a factor of about mH/me. The more energy the

electrons receive, the sooner they also lose energy again

through excitation and ionization. Thus an equilibrium tempera-

ture Te(xl) for the electrons is established within a distance

xl behind the front. This equilibrium-establishment process is

shown in Fig. 8; the values in (53) have been used for the region

ahead of the front.

An estimate indicated that for the orders of magnitude invol-

ved, it is permissible to neglect the deviations from Maxwell

distributions for electrons and atoms. It is thus reasonable to

apply the concept of temperature to both. Since the temperatures

of neutral hydrogen and protons differ only slightly, their

(weighted) mean temperature was used as TA. TA is still almost /405

unchanged in the first region behind the front: TA(xl).,v TA(O).

Fig. 9 shows temperatures TA and Te(x 1 ) as functions of front
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Fig. 8. Establishment of Fig. 9. Front temperature

equilibrium in electron TA of ions and H atoms, and

temperature Te behind the equilibrium temperature Te(x 1 )
front with the radiation of of electrons (Fig.. 8), as

energy; xl "a 1016 cm for , functions of Mach number M

the values in (53). From for values in (53) for the

[27]. region ahead of the front.
From [271].

Velocity. The relative difference between the two temperatutes.

continually increases with increasing front velocity.

3. The Onset of Ionization

Since essentially only the electrons can "ionize," we must

expect ionization to increase exponentially with time if density

and temperature do-not change appreciably. Since temperature /406

decreases as the result of radiation and density thus increases,

the increase in ionization ultimately becomes very steep, which

in turn produces a very steep dropoff in temperature and steep

rise in density.

Hertweck obtains a system of three first-order differential

equations for density, degree of ionization and temperature.

Fig. 10 shows the results of solving numerically for the values

in (53) and a front velocity of V = 100 km/sec (M = 85). The

rise in electron temperature Te up to equilibrium temperature '
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Fig. 10. a) Curves of TA and Te behind the front. b) The
same for gas density n and degree of ionization a.

The calculations were carried only to the point at
which TA and Te become approximately equal. The width (

(x3 - x2 ) of the steep compression region amounts to 
several

hundred free path lengths. From [27].

Te(xl) has been neglected here, i.e. the calculation already

starts with Te(xl). We see the at first exponential and then

steeper rise in the degree of ionization. A particularly striking

feature, however, is that density remains approximately constant

over almost the entire region, and increases quite steeply for

the first time in a very narrow region (x2 to x3 ). The same also

applies to the dropoff in temperature. The width (x3 - x2 ) of

this compression zone is on theuorder of 101 5 cm, and an estimate

of the free path lengths of c'hrged particles within this region

yielded 2.1012 cm. The compression zone is thus still several

hundred free path lengths thick, and a hydrodynamic treatment of

it is thus reasonable.

For x > x3 , temperature continues to drop off as density

increases. The degree of ionization becomes approximately constant

over a relatively long region, and then decreases again. Ad-

ditional assumptions which concern not only outward radiation

but also incoming radiation of energy are necessary for the

region farther to the rear, however.
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4. Comparison with Observation and Experiment

Hertweck offers the Cygnus Nebula as a possible example of

strong shock wave fronts with radiation. The spectra of the

nebular filaments have been studied by Chamberlain [29] and

Pikelner [26]. Strong lines, compared to Ha, are found for the

forbidden N II, 0 II and 0 III transitions. It has not yet

proved possible to find a star in the vicinity of the nebula which

is sufficiently hot for this excitation. On the other hand, the

annular structures can be easily interpreted as the expanding

shell of a nova explosion which took place in the past. The

jacket of gases, expelled at high velocity, forms a strong shock

wave front as it enters the interstellar medium; the gas in the

region ahead which passes through the shock front is heated and

radiates the thermal energy off again. The mass of gas moving

behind the shock wave front forms the energy reservoir.

The thickness of the filaments is about 5.1016 cm, ac-

cording to [29]; even finer structures can be detected with in-

struments of higher resolution. Theoretically, the longitudinal

scale is approximately inversely proportional to the density

ahead of the front, and since this density is not known relatively

accurately, it is likewise not possible to make an exact com-

parison with the calculated results. We can at least say, however,

that reasonable orders of magnitude have been obtained.

5. Shock Tube

Kantrowitz et al. [30, 31] have generated shock waves up to

Mach number M = 17 in argon; up to 40% ionization was obtained.

Distances were observed between the actual front and the beginning /407

of luminescence (x2 in Fig. 10) which fit an estimate by Hertweck

well. A theoretical article by J. W. Bond has since appeared in

which he treats shock wave fronts in the shock tube similarly to

the manner in which Hartweck treats those in interstellar matter,

49



and he also obtains similar results. Additional shock wave ex-

periments are conducted by Locte-Holtgrevenet al. in Kiel [33].

B. von Hagenow's Treatment [28] of the Isothermal Nonsteady Front

Hertweck's calculation was carried out for the steady front.

In order to also obtain an approximate description of the un-

stable case from here, we could neglect the thickness of the

region lying between the front and x3 and treat all changes in

state variables as discontinuities. Thus we would again have the

region ahead of the front, thei:front itself, and the region to the

rear, with the region to the rear starting behind x3 . The appli-

cable front conditions could be obtained from a generalization of

Hertweck's results to any front conditionsand any variables for

the region ahead of the front, and would be functions ofthe

chemical composition(d'fthe gas.

In the case of very strong and rapid radiation loss (and for

a region ahead of the front which is already relatively hot), we

can expect temperature within the newly defined front region to

have decreased again to almost the temperature of the region

ahead. For a sufficiently strong radiation exchange, the tempera-

ture farther behind also cannot drop below the temperature ahead

of the front. It thus appears reasonable to consider the limiting

case of spatially and temporally constant temperature, which

yields relatively simple and understandable formulae. Von

Hagenow is studying these "isothermal shock wave fronts" in a

project which has not yet been completed. The work will be pub-

lished in the future.

1. Basic Equations

The following are chosen for normalizing density, gas

velocity and sonic velocity:
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Lo = 1

Uo = o0 (56)
ao = 1,

and the abbreviation Ine =

is introduced. The first two basic equations (1) then read:

7 + Un u U. 0 (57)

U + UuZ + ?7, 0.

In place of the third equation (1), we have substituted the

constancy of temperature in the form

p = aop = p. (58)

In place of front conditions (2) and (3)!, applicable only to strong /408

shocks, we now have front conditions applicable to any shock

strength,

= V21

, -v (59)

where only the first equation is a boundary condition in the true

sense, since here, too, the front is reached by one characteristic

of the region behind. See the text regarding equation (2).

A concept of the strong front does not exist here, since the

temperature of the region ahead cannot be neglected now, because

T = const, in contrast to Section IIA. This is supposedly also

the reason why there are no homology solutions compatible with the

front conditions, as von Hagenow has shown. Consequently, there

can likewise be no such simple type of "standard solution" like

that in the preceding part.
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2. Computational Method

A method of characteristics was selected analogous to that

in Section IIA,1. The two characteristics have the directions

C = u + 1, C = u - 1 (with a0 = 1), (60)

and the hodograph equations read

Thus ( ), + (u 1) u ± = 0 (61)

u = const along C±. (62)

This means that u and n are known exactly at the intersection of

two characteristics, and only the position of the intersection

remains to be calculated; this has been done to a second approxi-

mation. Computational precision was estimated at about 1% over

a relatively long time interval, and distributions at given times

were again interpolated linearly in the network of characteristics.

3. Higher-Order Front Conditions

For most of the initial conditions for which von Hagenow

has previously made calculations, a second shock wave front

(moving to the rear) was formed on the C- characteristic which

arises at the front point at the starting time. We believe that

this can be avoided by a suitable choice of the initial distribu-

tion and that only those initial distributions are meaningful

which do not form such a front. Since similar conditions can also

occur in other calculations, we wish to insert a general discussion

of front conditions.

Front conditions (59) are assumed to apply along the front,

from which we can eliminate front velocity V,

I
u2  -2. (63)
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If we now define a function f(x,t) with /409

/ = +2 -2 - , (64)

then the front condition reads

/= o. (65)

Since this is to apply to all times, however, the derivative of

f must also vanish along the front:

t + Y  = 0.f x = X(t)= position of front (66)

We shall call (66) a first-order front condition; thus normal

front conditions (59) and (63) become zeroth order front condi-

tions. By further differentiation in the direction of V, it is

possible to derive front conditions of increasingly higher order

intthe::same manner.

If we substitute (64) into (66), we obtain a formula which

still contains partial time derivatives utvand pt. If we eliminate

these time derivatives with the aid of basic equation (57), we

obtain the following as a first-order front condition after

several intermediate calculations:

rY, V 1 + 3/V 2B, B
u= 3 1 + 1/3V2' (67)

B l for V>1. (68)

We now return to the choice of initial distribution. If the

boundary is supposed to represent a front at t = 0, normal front

conditions (59) must of course apply there. If this were not so,

the boundary point would be singular with respect to its values

of u and n. If the boundary is also supposed to already have been

a front shortly before (t = -6), the first-order front condition
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(67) must also be satisfied. If this were not the case, the

boundary point would be singular with repect to the first

derivatives.

The same argument can of course be extended to higher and

higher derivatives, but these have less and less practical im-

portance. Thus it was found for the fronts calculated in

Section IIA that a second front is generated on the C charac-

teristic originating from the zero ppint only if the inormal front

conditions are violated at the beginning. Now the isothermal

fronts are apparently somewhat more sensitive and also demand the

initial satisfaction of the first-order front conditions. But

this then seems to be sufficient. Condition (67) was satisfied

quite well in one of the initial distributions calculated; this

was the one distribution for which a second front was not

generated. We must thus be careful that we do not select any

initial distributions which are singular in the sense that the

front was not a front in the past.

4. Results /410

The most striking aspect of the examples calculated was that

velocity became a linear function of position after a brief time

(within the limits of computational precision). The logarithm of

density, n, also almost became linear, with a barely perceptible

curvature. As an example, we show the same distribution at two

different times in Fig. 11. The slopes of the curves (close to

the front) obey equation (67) here, from which we see that the two

curves cannot be made to coincide with the curves for a different

time by means of the same scale transformation, as could be done

in Section II,A,4.

In a manner analogous to Section II,C, von Hagenow has also

studied the class of linear solutions for the isothermal case.

The general solution can again be given, but it also does not
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)ai°}) . satisfy :the, front condi-

1o- -c tions. Thus, for the

2 -x distribution which is
SxX

-2 00. 0.7 established, velocity

cannot be exactly linear

0c, ts., (Aa.1) in x, but the linear

Ssolutions do seem to be

--x well suited to an approxi-
21 £2 2.3 2£ £5 26 2.7

mate representation of

Fig. 11.- Example of the development the region to the rear. In
of a nonsteady isothermal front with the isothermal case, no
time (u = gas velocity, p = density).
a) initial distribution; b) and arbitrary function remains
c) distributions at different time solu-
intervals. Other 'initial distribu-
tions yield the same distributions tions as before; n is now
as these for a given Mach number quadratic in x.
M (after an adjustment period).
From [28].

The following was also

found. If we consider two different initial distributions, the

distributions associated with equal front velocities V are equal to

one another after a short "adjustment time" if we suitably

normalize the x-scale. If in place of n(x,t), for example, we

now write n(y,V), making use of V(t) and y = x - X, we then obtain

the following after a certain period of time for two different

initial distributions:

n1 (y,V) = n2 (cy,V) with c = const, (69)

and similarly for u(y,V). It should be noted here, though, that /411

(69) would be trivial and would follow from (67) if u and n were

linear in x. And whether (69) also covers the slightly nonlinear

portion of curves u and n can still not be answered clearly enough

with calculations made so far.

A somewhat more far-reaching test of the same state of affairs

also provides confirmation, however. Let us consider front
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velocity V as the parameter for two different initial distributions

and define tl(V) as the time at which the first distribution has

reached the value V and t2 (V) as the time at which the second

distribution has reached V. By eliminating V we then obtain a

function t2 (tl). For the examples calculated, it was found that

t2 = a + btl with a, b = const (70)

in all cases after a short adjustment time. Fig. 12 shows an

example. Here, the fact that a 3 0 means that the two distribu-

tions require different adjus.tment. times, and b 3 1 indicates a

difference in time scale for development, caused by different

widths of the initial distributions, i.e. by different-x-scales.

This reduces to (69) and it can actually be shown that (70) and (69)

mean the same thing. Here, b = c, since

dV 3 1(
dt 2B - 7 (71)

can be derived from the front conditions and (67),-whereby the

time and position scales are related to one another.

In summary, it can be said, first of all, that the isothermal

front can have no time-independent standard solution as in Section

II, as can be seen just from (67). Secondly, a type of time-

dependent standard solution appears to exist (rather, V-dependent),

and we should study whether a time-independent part can be

separated from it. Thirdly, the linear solutions are good approxi-

mate representations, just as before.

A satisfactory answer to the problem of the standard solu-

tion, or a good approximate description in simple form applicable

to all V, would be necessary for this chapter on isothermal fronts

to be considered complete. Also necessary would be an estimate

of the physical conditions under which the isothermal approximation
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can be.valid as a description of

a single shock wave front. And we

3 also should try to determine when

a field of statistically distributed

fronts may be described in this

,. manner. (For example, we could ask: /412

if energy exchange by radiation is

1 2 I s high enough for isothermal, behavior,

Fig. 2. Times tV and can momentum exchange by radia-.
Fig. 12. Times tl(V ) and
t2 (V) after which two dif- tion still be neglected?)
ferent initial distribu-
tions possess front velocity
V. See text regarding IV. Steady Front in a Magnetic
equation (70). From [28]. Field

1. Introduction

A large number.,,of articles already exist on the presence of

magnetic fields in(;cosmic objects and on the area of magneto-

hydrodynamics stemming from this and related problems; the

reader is referred to the bibliographies in LUst [34, 35:]. We

estimate fields on the order of 106 Gauss4 for interstellar

matter. If an ionized gas (= plasm) is in turbulent motion,

electric currents arise (due to the differences in masses of

electrons and ions), and thus magnetic fields are formed. In par-

ticular, all magnetic lines of force..already present are eddied

by the turbulence, and their density is thus increased. An expo-

nential increase in field strength, with time, results until the

energy density of the magnetic field becomes< comparable to the

energy density of the turbulence. From this point on, the tur-

bulence is strongly influenced and retarded by the magnetic field

(e.g. anisotropy).

Higher field strengths, up to 10-3 or 10-2 Gauss, also occur in
certain objects, such as the Crab Nebula.
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Under conditions which occur in the cosmos, it is a charac-

teristic of a plasma ina magnetic field that matter and lines of

force practically "cling together": either the matter takes the

lines of force with it as it moves (weak field) or can only move

parallel to the fixed lines df force (strong field). This is

caused by the fact that we can reckon with practically infinite

electrical conductivity a. We present some data in Table 4,

taken primarily from an article by Schliter [36], for comparing

cosmic conductivities with metals and types of discharges on

Earth.

TABLE 4. ELECTRICAL CONDUCTIVITY a (IN esu = sec - 1 )

log a log a

Center of sun 18.3 Solar photosphere 12.9
Copper 17.7 Arc discharge 12.9
Mercury 16.0 Interstellar matter
Solar corona 15.7 HII region 12.7
Graphite 14.6 HI region 11.8 to 10.6
Glow discharge 13.6 Windbw glass -1.0

Paraffin -4.7

The decay time T of a magnetic field due to ohmic losses is

the criterion for evaluating conductivity:

12 or
T= t2 (72)

where Z is a length characteristic of the magnetic field (such as /413

the radius of curvature of the lines of force), and c is the

velocity of light. Even with log a = 10.6 for HI regions, assuming

small structural details of I = 0.01 pc = 3*1016 cm, we obtain

= 1015 years. This means that we can reckon with practically

infinite conductivity for times within the universe's age of

5-109 years.
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LGst sets up the equations in [341 for steady planar fronts

of any strength in homogeneous magnetic fields of any strength and

any direction, and discusses the various types of solutions in

[35]. List's results could again assume the role of front condi-

tions for nonsteady fronts.

2. The Basic Equations

If friction and thermal conductivity are neglected, the basic

magnetohydrodynamic equations have the following form in the

steady case:

a) The equation of motion:

1
@ (u grad) D = - grad p - 4 1 [ rot D]; (73)

b) The equation of continuity:

c) The law of the conservation of energy can be written

(, grad i) = 1 (o grad p), (75)

if we designate enthalpy per unit mass as i = e + p/p.

d) For the magnetic field we also add sourcelessness

div =O (76)

e) and the induction law, which under conditions in the

introduction section has the form

rot [~] = 0. (77)

LUst derives the appropriate laws of conservation from these

basic equations. We find that we obtain the same form as in

normal hydrodynamics if, in place of pressure p, we introduce
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a pressure tensor

i= (78)

add a magnetic term to internal energy e per unit mass

e*=e+ 2, (79).

and also write enthalpy i as a tensor

=1 ) b2) 4 He k (80)

3. Front Conditions /414

From the laws of conservation, LUst calculates front condi-

tions for the quantities p, i, vx, vy, Hx, Hy (x is the direction

of propagation of the front; y is the direction of the projection

of the lines of force on the plane of the front). Due to the

complexity of the equations, we must refer the reader to the

original article. In the case of oblique lines of force, they

exhibit a break as they pass through the front, and we thus now

have (in contrast to the front without alfield) an additional

tangential acceleration of the gas as the front passes through it.

An additional, more'important complication is that the front

conditions are no longer single-valued. For example, the equation

for the jump in density is third-order. It can have three real

solutions, at least one. ofwhich we ignore, though, due to the

required entropy increase in the front. The remaining ambiguity

then means that for a specified region ahead of the front and a

specified front velocity, conditions behind the front are not
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established uniquely; rather, two different types of shock wave

fronts are possible under some circumstances. Because of this fact,

LUst first performs an analysis for the limiting case of vanishing

shock strength (M = 1), i.e. for sonic waves.

4. Sonic Velocity in the Plasma

Due to the transverse rigidity of the magnetic field, there

are three different types of sonic waves in the plasma with

(generally) different sonic velocities. We show a polar diagram

in Fig. 13. If we set up a perturbation at the origin at time

t = 0, the three sonic waves produced lie on the plotted curves

at time t = 1. The waves whose velocities are designated c+ and c_

oscillate in the x,y-plane (defined as above) obliquely relative

to the direction of propagation, i.e. are mixed longitudinal and

transverse waves. The wave designated cA undergoes pure transverse

oscillation in the z-direction and is called an Alfv6n wave.

Let B be the ratio of hydrodynamic internal energy e to total /415

energy e*, as given in (79), 4 be the angle between the lines of

force and the direction of propagation, and let n = cos4,

e

= H- 1 - 1  (81)

= cos q2;

Fig. 14 then shows the three sonic velocities as functions of B and

n. We see, for example, that only for relatively weak magnetic

fields do cA and c_ differ by as little as they are shown to

differ in Fig. 13.

We show all of the possible limiting cases in Table 5. Thei

last line, for example, tells us the following: the c_ wave is

generally mixed (direction of oscillation oblique to direction of
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Fig. 13. Polar diagram of Fig. 14. The three sonic
sonic velocities c-, cA and velocities as functions of
c+ for a plasma in a mag- the strength and direction
netic field (6 = 0.75, i.e. of the magnetic field; see
magnetic energy is 1/4 of (81). From [35].
total energy). From [351.

TABLE 5. LIMITING CASES FOR THE THREE TYPES OF SONIC WAVES

Field rel. to.direction of propaga-
=l itnon

Wave type In. gen-_
eral II I II I

C+ m cS(l) Cg(l) CA(t) Cg (1)
CA t CA(t) 0 CA(t) 0

C . cA (t) 0 cS(1) 0

Weak field- Stong field

cS = .pp/3p_,6dinary sonic wave without field,
A2 = H2//4p, Alfv6n wave,
2

Cg = H /4fp, limiting case for c+ wave,

I = longitudinal,
t = transverse,
m = mixed.
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propagation); in a parallel weak field, its velocity is equal to /416

that of the Alfv6n wave, and the direction of oscillation is

purely transverse. In; a parallel strong field, its velocity is

equal to sonic velocity without the field, and the direction of

oscillation is purely longitudinal. The velocity of the c- wave

becomes zero in a perpendicular field in each case, and

cA << cS in a weak field, (82)

cA > cS for a strong field.

5. Discussion

The presence of the three different types of sonic waves in

a plasma can be considered certain. It is not clear, on the

other hand, whether the corresponding three different types of

shock fronts can actually be realized physically. In Fig. 15 we

show the density jump in the front as a function of front velocity

V for a relatively strong magnetic field. Accordingly, a front

(corresponding to the c- sonic wave), which we have labeled F-,

exists at V > c_; the jump in density initially increases. The

other two solutions begin below P2/Pl = 1; they would thus be

connected with an entropy decrease and are thus physically im-

possible. Only beyond V = cA can we add front FA (corresponding

to the Alfvn wave). As V increases, the density jump in FA

increases and that in F_ decreases, until both finally coincide

at V = Vg. No shock wave front exists at all from there to V = c+;

front F+ only occurs beyond V = c+. From there on the density

jump increases monotonically and approaches the limiting value

P2/P1 = 4 asymptotically (just as for a strong front without a

field).

It appears somewhat incredible that an interval V < V < c+

should exist in which no shock wave fronts are possible, while

shock wave fronts still exist at lower velocities (in the
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interval c, < V < V ). What

A happens, for example, to an

_I_/_ __ F front continually accelerated

0- V- from behind as it passes V

C C' It is generally characteristic

Fig. 15. Density jump in the of a shock wave front that it

front as a function of front is faster than the perturbation
velocity V for B = 0.25 and
n2 = 0.5; see (81). From [35]. waves emanating from it, i.e.

it moves into an undisturbed

region to the front of it. A study should therefore be made as

to whether the F_ and FA fronts are perhaps physically impossible

because c+ waves might be excited by them which move more rapidly

than the front itself. That would then mean that shock wave

fronts can only form via the highest of the three sonic velocities,

c+. Clarification of these questions would be very desirable.
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V. -The- Interaction of Nonsteady Fronts /417

1. Introduction

The problem of the interaction of shock wave fronts plays

a critical role in the working program which we set up at the

beginning (turbulence with supersonic velocities). The actual

objective here would be to obtain the simplest possible general

information regarding the interaction of shock wave fronts of

any strength and direction, also taking energy radiation (and

possibly magnetic fields) into consideration. The article by

K. Hain [37] can be considered a first step in this direction;

he calculated a number of examples numerically which involve

two planar, parallel, nonsteady fronts which collide or over-

take one another, without energy radiation loss and without

magnetic fields. The overtaken front or, in the case of col-

lision, both fronts are assumed to be strong and of the type

associated with the standard solution; the undisturbed region

ahead is quiescent and of constant density and negligible tem-

perature.

Since the complexity and extent of computations almost

exceeded the capacity of the one G 1 computer available at

that time, only a relatively small number of examples -- six --

could be computed. It was therefore also not yet possible to

get much farther than theorems and suppositions with respect to

the requirement for a general and simple description. The

results are represented in the original article in the form of

numerous figures which indicate the spatial and temporal behavior

of the variables of state. We can only present a brief summary

here.

As in [6], calculations were again made using the method

of characteristics, with differential satisfaction of the front

conditions for any front strength; the front conditions were
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solved by iteration. The state variables at the space-time point

of collision (or overtaking) are obtained from the. equations of

Courant-Friedrichs [14].applicable to .steady shock waves.

2. Collision

In Fig. 16a we show the space-time point of collision and

its vicinity. V+ and V- are the velocities of the two incoming

fronts. Two outgoing fronts are formed, plus a discontinuity

surface at which density and temperature change discontinuously

while pressure and velocity remain continuous.

In order to char-

- ' . - acterize the strength

SP I -P ratio of the incoming
Po a fronts, we define

a) u'>O U-o
p = b) u -  -= - (83

p.0 e.4V P The discontinuity

surface Vanishes forX

fronts of equal

Fig. 16. Interaction between two shock strength (F =. 1).

wave fronts. a) Collision, b) one The two outgoing
overtafing the other.

' hock wave front, denser side fronts can no longer
hatched; be approximated as

----- Discontinuity surface.
Centered rarefaction wave shown as a strong fronts, since
pencil of lines. From [37]. the density jump is

now only by a factor

of 2.5, as compared to a factor of 4 for a strong front. Thus

density increases by a total factor of po-/p = 10 relative to

the undisturbed region ahead. Pressure increases by a factor of /418

6 and temperature by a factor of 2.4 at the outgoing front.
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If the shock wave fronts are very unequal, on the other hand,

e.g. F >> 1 (but both Mach numbers large relative to 1), the

stronger of the two fronts continues almost unchanged as a strong

front, whereas the weaker of the two proceeds with a density
+ +

jump of p /p = 1.5 after collision. Maximum density increase is

now po/p = 16 for F >> 1. The timewise development of front

values can be described as follows. Density decreases rapidly

in all cases, since each front is passing into the region of

decreasing density behind the other. The situation is different

in the case of front velocity: were the front to pass into a

quiescent, constant region, front velocity would drop off. This

is opposed by the facts, first, that the density of the region /419

ahead of the front decreases and, secondly, that gas velocity

in the region increases in the direction of front velocity. The

behavior shown in Fig. 17 results: only in the case of a very

unequal strength distribution does the velocity of the stronger

front (F = 4) decrease with time, whereas for F < i, the effect

of the region ahead predominates, and a pronounced increase in

front velocity with time results. Temperature at the front

decreases monotonically for F = 2 and F = 4, while for F < 1

it initially rises somewhat and only then falls off.

uf

0 0 2 3 6 o,-0 -02 0 0.2 a4 06 as 8 1,0

Fig. 17. Front velocity Vo as Fig. 18. Front strength Mo, as
a function of time after col- defined by (84), after collision
lision. F from (83). Normali- as a function of homology variable
zation: u+ = 1 for F > 1, and - for the region ahead of the
u- = 1 for F < 1. From [37]. front.. Timewise development pro-

ceeds from right to left. From
[371.
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Hain proposes that the timewise development of the front

values not be plotted .over time itself but over the homology

variable defined by (25) for the region ahead. (The homologous

standard solution was assumed for this region ahead, i.e... the

region behind the opposing front.) When this type of plot is

made, it appears as if fronts of all strengths would, after

initial differences, ultimately approach the same timewise

behavior.

As an example, we show the timewise behavior of the quantity

31 = Vj -- u-(4
0== (84)

in Fig. 18 as a function of ; M o represents a measure of the

strength of the outgoing front. M o -- 1 in the limiting case of

the weak front; Mo 4//V = 1.79 in the limiting case of the

strong front. (The quantity M was erroneously designated as

Mach number in [371.) It appears as if all fronts would stop

at about the same E value (Mo = 1), at approximately E = -0.7.

A further study of this problem would be of interest, particularly

for the collision statistics which are to. be applied.

The spatial distribution of the variables of state in the

region behind the front is shown by Hain in a large number of

figures. While velocity deviates only slightly from linearity,

the other quantities differ greatly from the standard distribu-

tion, since no free flowoff can occur to the rear, and since

the region ahead is not constant. Temperature decreases con-

tinuously to the rear, density generally increases.

3. One Overtaking Another

Figure 16b shows the space-time point of overtaking and

its vicinity. A forward-moving shock wave front, a discontinuity
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surface and a rearward-moving centered rarefaction wave are

generated according to [14]. If the density jump is p+/p > 1.6,

the resultant front is faster than the. original front.

The standard solution was always employed in numerical com-

putation for the overtaken front (V-) and the region behind it.

The overtaking front (V+ ) was likewise used in the form of the

standard solution at the beginning of calculation, but subsequent

calculation was done with the method of characteristics in the

nonsteady mode. The overtaking front decays so rapidly with

time that it could not be followed beyond the time of over-

taking in two computed examples.

It is worth noting that here, too, linear velocity distribu-

tions are again set up in all cases, both behind the overtaking

front (V+ ) and behind the generated front (V ). The tendency /420

toward linear flowoff thus appears to be very general and dominant.

The results of the calculations can be represented as follows:

If the overtaking front is weak, the overtaken front is modified

to only a very slight degree. If the overtaking front is strong,

the standard solution is likewise established again behind the

generated front after a certain period.

4. Summary

1. When one front overtakes the other, the standard solution

is always established a certain length of time after interaction.

2. After collision, the subsequent behavior of the fronts

appears essentially to be determined only by the homology solu-

tions into which they pass. All fronts appear to have decayed

to Mo 
= 1 at about E = -0.7, but this still remains to be con-

firmed by additional calculations.
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3. All velocity distributions generated are approximately

linear.

Addendum: A restriction is necessary regarding item 2. If

we define the width w of a front at the instant of collision to

by

w = X - x,1,1 and Q(xl,, to) = (1/2) e(X, to),

then the width ratio has always been taken as W = w+/w- = 1 in

the examples calculated by Hain. For a complete description,

however, not only front strength ratio F but also width ratio

W would actually have had to vary. In going to a limiting case,

e.g. W - 0, we see that statement 2 (all fronts have decayed to

Mo = 1 at the same ) can then no longer hold.
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VI. Statistical Model of a Field of Shock Wave Fronts

1. Introduction

The goal of our working program was first to study the

individual problems of shock wave fronts and their interaction

and to answer them with the most general and simplest possible

statements. These results were then to help in describing,

completely and statistically, a field of shock wave fronts

passing through one another. In particular, processes involved

in the establishment of equilibria or steady states were to be

studied, and we can seek an ultimate state of equilibrium

established with a suitable input of energy. This statistical

description of an equilibrium approached asymptotically should

then serve as a basis for a theory of supersonic turbulence.

In the preceding sections we reported on the studies con-

cerning the individual problems. If we consider the selection

of problems studied and the scope of the results obtained, it

might seem premature to begin now with a statistical description.

In particular, we are still missing a study of the interaction

of fronts intersecting obliquely and of the effect of energy

radiation (and possibly of magnetic fields) upon interaction. /421

Sufficient material is not yet available in Chapters III (radia-

tion loss) and V(interaction), and that which is available has

not yet been worked through sufficiently to allow adequate repre-

sentation in simple and general statements. Moreover, only

infinitely extended fronts have been studied so far, whereas we

require the timewise development and the interaction of spatially

restricted fronts for the statistics of a shock wave front field.

If we nevertheless make an attempt now at a statistical

description of shock wave front fields, we do so for two reasons.

First, the general behavior of a shock wave front field can

already be studied qualitatively with a very crude model. We

can use it to see, say, how an equilibrium state might look, and
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when and how it would be established. In addition, we obtain a

feeling for the initial data on which it essentially depends.

The second reason is of a technical nature: even the execution

of a very crude model practically exceeded the capacity of the

Gottingen G 2 computer, and the execution of a considerably

improved model would be quite hopeless at this time. In the

following we describe work by Irene Crone [38] on a very simplified

statistical model.

2. The Model

In order to limit computational outlay, which increases

sharply with the number of dimensions, the velocity and size df

the fronts were considered in only one dimension, the position

of one front in two dimensions. All fronts lie parallel to the

y,z-plane and move in the x direction. They are of infinite

size in the y- and z-directions. We do not consider the processes

occurring in a volume, but only the lines of intersection of

the fronts with the x,y-plane, so the size of the fronts in the

z-direction does not play a role. We consider only a fixed

rectangle; fronts which leave this region at one boundary are

reintroduced at the opposite boundary at a random location with

the same variables of state.

Each front is characterized by two quantities: velocity (in

the x-direction) and length (in the y-direction). Velocity

decreases with time, as t-0. , as an approximation to the standard

front. This means that we assume a spatially and temporally

constant average for all variables of state for the region ahead

of each front. New fronts, discontinuity surfaces and expansion

waves are generated by interaction (in accordance with the

formulae from [1 4]);:all possible interactions among these three

types of objects are taken into consideration. In the examples

calculated, the total number N of all objects lay within the
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interval 50 < N < 1000.... As an example, we show the collision

of two fronts with partial overlap in Fig. 19.

a) b)

Fig. 19. Model collision between two fronts. A) Before,
b) after. Four:smaller fronts and a discontinuity surface
are produced. From [38].

Small fronts are always produced from large fronts. This

process has a lower limit in nature, since very small fronts

disintegrate rapidly ("break up" from the edge inward); this
is taken into consideration in the model, as a rough approxi-

mation, by the introduction of a "minimum length." All fronts /422
which are produced below this length are simply deleted. Like-
wise, all fronts are deleted which have dropped to Mach numbers

less than 1.5 in the course of time.

The energy input necessary for a steady state is provided
by the fact that a certain number of large and fast fronts are
reintroduced per unit time at the boundaries of the region,
with Mach numbers up to M = 25.

The model includes a number of parameters which can be
selected freely, e.g. the frequency of energy input, the
frequency distributions of the lengths and velocities intro-
duced, the ratio of the largest to smallest length, etc. The
most important of the free parameters, however, is provided by
the ratio of mean collision time to the time scale of the
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velocity drop of the fronts. This parameter is defined by

V(to + ro) +TO -0,
a = V( 0  1 - (85)

in I. Crone's work. Here V(t) is front velocity, decreasing

with time as t - 0 4; to is the "age" at which all fronts in the0
energy input are reintroduced; and to is mean collision time

(at the beginning of a computational example). The significance

of a will be illustrated with the extreme cases. If a + 0,

then practically no collisions occur; the fronts fed in simply

die out by "aging'." If a i1, then practically no "aging" occurs;

the introduced fronts chop one another down to minimum length

in a short time. After several preliminary trials, a = 0.6

was selected; reasonable processes of steady state development

were obtained in the vicinity of this value.

3. Execution

The problem was solved by Monte Carlo methods, since the

differential equations both for the process of establishing

a steady state and for the steady state are hopelessly complex.

The necessary random data were continually generated during

computation by a method proposed by the author in [39].

Some pairs of fronts available in a "list" are selected by

random decision. A probability P is calculated for the inter- /423

action of two such fronts from the two velocities and lengths.

A random number (equally distributed within a certain interval)

is now generated. If probability P lies above this random number,

interaction occurs; if it lies below, two other fronts are selected.

When interaction occurs, the two old fronts are deleted from the

list; the products of interaction are calculated and entered in

the list. In addition, a new front is added at statistically

distributed time intervals (energy input), the variables of state
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for which are random values from predetermined distributions of

length and velocity. All of these processes were taken care of

by a fully automatic program on the G 2..

4. Results

In the following figures we present a number of the results

from four examples which were executed. If we designate the

number of shock wave fronts added per unit time as Z, then

ZD:ZC:ZF:ZE = 1:2.1:2.1:4,2,

and the values of a are

a = aD = E 0.60 and F = 0.75.

Velocities are equally distributed over an interval 0.75 Vmax < /424

V Va x at the beginning of computation and in the introduc-

tion of new fronts, and likewise for the lengths. The Mach

number is M = 25 at Vmax here, and r max/rmin  10.7

80

70 b)

D 60

I I I E

2 4 6 8 1000 Z 4 6 8 2000 4 6 8 10
-- t-.---. !

2 6 8 1000 2 4 6 8 2000 2 4 6

Fig. 20. Process of steady state establishment in a
field of shock wave fronts. a)2 Total energy ZrV 2 over
time t. b) Mean square velocity over time t. From [38].

In all four examples, all mean values and likewise all

distributions approach an equilibrium state after a certain

length of time. In Fig. 20a we see the timewise development of
"total energy" ErV 2 contained in the region under consideration
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(r = length, V = velocity, summed over all fronts, discontinuity

surfaces and rarefact.ion waves). Figure.20b. shows the development

of mean square. velocity V 2 . A striking feature is that the mean

velocity which is established hardly depends upon the parameters,

and is about equal to half the velocity of the fronts added. On

the other hand, total energy (for a given a) decreases approxi-

mately with v7, since pronounced dissipation results from the
"chopping up" effect accompanying a high input level.

Figure 21 shows the dis-

,n Pmax tribution of length r

which is established in

example C. Practically

the same distribution isS60-

0 m also eventually established

in the other examples.

The distribution increases

100 200 300 00 sharply toward the smallest

fronts; we see from this

Fig. 21. The distribution N(r) of that cutting off at a
front lengths r which is established
in example C. The result is about "minimum length" represents
the same in the other examples, too. a somewhat forced simpli-
From [38]. fication of our model.

It was found that this model is thoroughly suitable for

studying processes in the assumption of a steady state in a

field of shock wave fronts and that it is reasonable to seek

an equilibrium state and to try to describe its characteristics

statistically. Moreover, the usability and superiority of the

Monte Carlo method used is confirmed for the problem at hand.

In closing, we would again like to. express the hope that

the problem treated here will be attacked again in another study
group. To this end, the interaction of. oblique fronts with
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energy radiation should probably first be studied, perhaps making

use of the limiting case of the isothermal front.. An additional /425

point yetto be clarified is the timewise development of fronts

of finite extent. A three-dimensional model improved in this

respect should then be capable of providing quantitative infor-

mation for the theory of supersonic turbulence being sought.

To be sure, it could only be executed on an extremely fast and

large computer.

I would like to cordially thank Prof. von Weizsacker and

all members of our study group for many discussions and for a

number of unpublished works which were obligingly made available

to me.
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